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Abstract: The genetic toggle switch is a well known model in synthetic biology that represents the
dynamic interactions between two genes that repress each other. The mathematical models for the
genetic toggle switch that currently exist have been useful in describing circuit dynamics in rapidly
dividing cells, assuming time-invariant kinetic rates. There is a growing interest in being able to
model and extend synthetic biological function to growth conditions such as stationary phase or
during nutrient starvation. In this paper, we propose a novel class of parameter varying nonlinear
models that can be used to describe the dynamics of genetic circuits, including the toggle switch,
as they transition from different phases of growth. We show that there exists unique solutions for
this class of systems, as well as for a class of systems that incorporates the microbial phenomena of
quorum sensing. Further, we show that the domain of these systems, which is the positive orthant, is
positively invariant. We also showcase a theoretical control strategy for these systems that would
grant asymptotic monostability of a desired fixed point. We then take the general form of these
systems and analyze their stability properties through the framework of time-varying Koopman
Operator theory. A necessary condition for asymptotic stability is also provided as well as a sufficient
condition for instability. A Koopman control strategy for the system is also proposed, as well as an
analogous discrete time-varying Koopman framework.

Keywords: dynamical systems; nonlinear stability; parameter varying systems; time-varying systems;
Koopman operator theory; nonlinear control

1. Introduction

Switching behavior in biological networks is of interest to many researchers across a
variety of disciplines, such as epigenetics [1], synthetic biology [2], dynamical systems [3]
and more [4–6]. The ability of complex biological networks to implement mixtures of
switching behavior and nonlinear smooth system response make them a key area of focus
in understanding how network structure, combined with system logic, are able to map
structure to function [5–8]. The toggle switch is a special case of a two node Goodwin
oscillator and thus provides the simplest biological realization of multi-stable behavior [9].
Finally, the toggle switch is present as a sub-network motif in many natural biological
networks [4].

To date, most synthetic biological circuits are implemented in liquid suspension,
assuming well stirred growth conditions and ample nutrient supply. Cells in this setting
often divide exponentially, following a log-linear or log-phase growth curve. However, in
every batch growth condition, bacterial cells will slowly deplete all nutrients in a growth
medium, giving rise to late log-phase or early stationary phase dynamics [10]. In this
setting, genetic circuits can be modeled as being subject to time-varying kinetic rates, as the
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cells are no longer in a state of dynamic, chemical equilibrium. Designing genetic circuits
to function in nutrient depleted conditions is an open challenge.

Quorum sensing genes inside of living cells allow the cells to naturally sense when the
cell population is becoming increasingly dense and saturating their growth environment.
Quorum sensing genes activate in response to small homoserine lactone molecules, known
as quorum signaling molecules, which are produced in cells containing these genes [11]. As
the density of the cell population reaches saturation, the fraction of active quorum sensing
genes begins to rise, which can act as a natural trigger for late log-phase or stationary
phase biological processes. Several ordinary differential equation (ODE) models have been
developed to model quorum sensing dynamics [12–14]. Nikolaev and Sontag modeled
how a network of bacteria such as Pseudomonas fluorescens or E. coli use quorum sensing to
synchronize gene expression according to toggle switches within each cell, thus showing
how quorum sensing can synchronize switching behavior in a population of cells [15].
We have introduced the phenomenon of quorum sensing because we later introduce a
toggle switch model with time-varying kinetic rates that incorporates quorum sensing.
Furthermore, we use quorum sensing in our models because we later implement a control
strategy which requires the tracking of cell population density.

As a brief review, the classical genetic toggle switch [9] is modeled as follows:

ẋ =
α1

1 + yny
− δ1x (1)

ẏ =
α2

1 + xnx
− δ2y

where x ∈ R≥0 and y ∈ R≥0 represent the concentrations of repressor 1 (LacI) and
repressor 2 (TetR); α1 and α2 denote the effective rate of synthesis of repressor 1 and 2;
δ1 > 0 and δ2 > 0 are the decay rates of repressor 1 and 2 respectively; nx ≥ 1 and ny ≥ 1
represent the cooperativities of repression of promoter 1 (the Tet promoter) and 2 (the Lac
promoter). This formulation can be represented using the standard mutual repression
network model in Figure 1.

Figure 1. Mutual repression between two genes in a toggle switch. Here, we see that the gene x
represses the expression of gene y, and vice versa.

A feature of the classical genetic toggle switch model is that the parameters are static,
i.e. time-invariant. If we relax this assumption for the effective rates of synthesis and the
decay rates, then we could have in our model that α1, α2, δ1, δ2 change over time. This
expansion of possibilities over the system parameters provides a more general framework
to the modelling of the dynamics of the genetic toggle switch than the current models in
the field. The resulting mathematical model involving the time-varying parameters in
question would then be a parameter varying nonlinear system (PVNS). Invoking this idea
raises questions related to the stability of such a system as well as transient and steady
state behavior. The analysis related to these PVNS toggle switch models is provided in this
paper, as well as further findings pertaining to such a system with quorum sensing.

Koopman operator theory has been shown to provide insight into system behavior
[16–23] through the analysis of the spectrum of a nonlinear system’s Koopman operator
(see Section 3 for a detailed introduction). Specifically, for biological applications, Ref.
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[24] showed that deep neural networks combined with Koopman operator methods could
recover the governing equations of a glycolytic oscillator. Ref. [25] showed that Koopman
operators could be used to formulate steady-state control of large-scale biological networks
as a data-driven convex program, while Ref. [26] showed that cell growth could be modeled
and predicted using Koopman operators that acted on temporal embeddings. Hasnain
et al. [27] subsequently demonstrated that dynamic mode decomposition, a numerical
method for estimating linear Koopman operators, could be used to quantify the impact
of synthetic gene dynamics on a host organism. For observability and state estimation,
Ref. [28] showed that Koopman operator methods could be used to determine sensor
placement in sparsely measured gene networks and Ref. [26] showed that sensor fusion
with Koopman operators enables more accurate identification of the underlying embedding
space of Koopman observables.

Most recently, Johnson [29] showed that multi-stability of the genetic toggle switch
can be successfully recapitulated with a special basis of Koopman observables that satisfied
approximate closure. Nandanoori [30] showed that the spectrum of the genetic toggle
switch’s Koopman operator can be decomposed to mirror the invariant subspaces of the
original toggle switch’s phase space. In the literature described above, models of the toggle
switch, or more generally, the biological network of interest assumed that cells were in
a single growth phase, namely exponential growth phase. Motivated by the parameter-
varying nature of growth-phase transitions, here we define and extend the Koopman
operator framework for the analysis of parameter varying nonlinear system models.

2. Parameter Varying Toggle Switch Models
2.1. Parameter-Varying Toggle Switch (PVTS) System Model

The need for time-varying kinetic rates in the genetic toggle switch model comes
from the current inability to model and extend synthetic biological function to growth
conditions such as stationary phase or during nutrient starvation. With this quality in
mind, the expression of the two genes of the toggle switch in the given organism can then
be represented by the following parameter-varying nonlinear system.

(
ẋ
ẏ

)
=

 α1(t)
1+(y/ky)

ny − δ1(t)x

α2(t)
1+(x/kx)nx − δ2(t)y

 (2)

where x ∈ R≥0, y ∈ R≥0 represent the concentrations of repressor one and repressor
two; α1(t) > 0 and α2(t) > 0 denote the effective rates of synthesis of repressor one and
two. Note that we also require α1(t) and α2(t) to be bounded and to converge to positive
constants; δ1(t) > 0 and δ2(t) > 0 are the self decay rates of repressor one, repressor
two; Note that we also require δ1(t) and δ2(t) to be bounded and to converge to positive
constants nx ≥ 1 and ny ≥ 1 represent the respective cooperativities of repression for
promoter one and promoter 2; the Michaelis constants kx and ky are respective binding
affinities. Similarly to (1), we have that (x, y) ∈ R≥0 ×R≥0.

Given that α1(t), α2(t) are strictly positive functions over time, this is a parameter
varying nonlinear system of the general form:

˙⃗x = f⃗ (x⃗(t), α⃗(t), δ⃗(t)) (3)

where α⃗(t) and δ⃗ are the vectors of time-varying parameters

α⃗(t) =
(

α1(t)
α2(t)

)
, δ⃗(t) =

(
δ1(t)
δ2(t)

)
and x⃗ ∈ R2, t ≥ 0, f⃗ : R2 → R2. As a modelling choice, it makes sense to assume that
our time-varying parameters are bounded because it would be physically infeasible for
there to be an unbounded rate of synthesis in α⃗(t) or an unbounded rate of decay in δ⃗(t).
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Furthermore, asserting these natural assumptions of boundedness will guarantee existence
and uniqueness of solutions for this model (see Appendix A), which has already been
established for the standard genetic toggle switch model.

This model is flexible in that α⃗(t), δ⃗(t) can be chosen to be sets of natural endogenous
kinetic rates or to be sets of expression rate multipliers. If developments in synthetic
biology allow, then perhaps one day we can even select our time-varying parameters to be
piecewise continuous functions, producing a piecewise smooth hybrid dynamical system.

Promoter leakiness has been modeled with the inclusion of time-invariant parame-
ters which have shown to affect stability properties of genetic toggle switches [31]. It is
important to note that these parameters can be included in our models as multiplicative
constants contained in the time-varying parameters and constant affine linear inputs. Using
time-varying parameters to model resource usage is in contrast to other contemporary
modeling approaches which use time-invariant parameters and a restructuring of the
vector field [31].

Our models assume a negligible amount of cellular heterogeneity, as cellular hetero-
geneity would invoke the use of stochastic methods to model parameters [31].

One important modeling criterion is that the generalized set of toggle switch equations
should have unique solutions for the initial conditions on the domain. If we have an ODE
of the form ˙⃗x(t) = f⃗ (x⃗, t) where f⃗ (x⃗, t) is Lipschitz over some domain D in x⃗ with t ≥ t0,
then we have existence and uniqueness of solutions to the initial value problem with initial
conditions starting in D [32].

Since the classical genetic toggle switch has been shown to have unique solutions over
its domain, then our more generalizing system should share this trait. This is given by
Proposition 1 where the proof can be found in Appendix A.

Proposition 1. Solutions to the PVTS with initial conditions x⃗0 starting in D = R≥0 ×R≥0
exist and are unique for t ≥ 0.

2.2. Genetic Toggle Switch with Quorum Sensing

Cells with quorum sensing genes are able to regulate their gene expression based on
the density of the cell population. We model the genetic toggle switch with quorum sensing
(GTSQS) by incorporating the quorum sensing components of the genetic circuit using
a 3rd state z that activates the first state x via a standard activator. The quorum sensing
element u3 will feed into this activator linearly, as will the respective inducers u1 and u2 of
the two genes of the toggle switch x and y (see Figure 2 for a network diagram).

Figure 2. Activation-repression network for GTSQS. Here we see that gene x represses the expression
of gene y, and that gene y represses the expression of gene x. We also have that the quorum sensing
activation response z activates the transcription of gene x. The inducers u1 and u2 represent inducers
of their respective genes. The input u3 is the quantity of the molecule used by the microbe to detect
the presence of other microbes.

The mathematical model of such a system is as follows:
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ẋ

ẏ

ż

 =


α1(t)(z/kz)nz

1+(y/ky)
ny+(z/kz)nz − δ1(t)x

α2(t)
1+(x/kx)nx − δ2(t)y

α3(t)z
kz+z − δ3(t)z

+


u1(t)

u2(t)

u3(t)

 (4)

where x, y represent the concentrations of repressor 1 and repressor 2; z represents the
quorum sensing activation response of the system that ultimately affects the concentrations
x and y; α1(t) > 0 and α2(t) > 0 denote the effective rates of synthesis of repressor 1 and 2,
respectively; α3(t) > 0 denotes the effective rate of the quorum sensing activator i.e. the
rate at which quorum sensing affects gene expression; δi(t) > 0, i ∈ {1, 2, 3} are the
self decay rates of repressor 1, repressor 2, and the quorum sensing input, respectively;
nx,y,z ≥ 1 represent the cooperativities of repression of promoter 1, promoter 2, and
the quorum sensing input, respectively; kx,y,z > 0 are the respective binding affinities;
(x, y, z) ∈ R≥0 ×R≥0 ×R≥0; u1, u2 are the inducers modeled as affine linear inputs; u3 is
the quorum sensing input. Note that we also require the time-varying parameters to be
bounded functions of time which converge to positive constants.

In general, input signals to a biological network enter a nonlinear term, but the
overall input signal may be generated by a Hill function [4]. Usually these input functions
describe substrate saturation of a small molecule diffusing the cell membrane or a small
molecule of mRNA designed to create interference, e.g., a CRISPRi gRNA designed to
repress expression of a gene. In such a setting, there is always additive separability and so a
generic input signal u(t) can be defined as the functional value of each of these nonlinear
saturation functions. In short, this justifies the use of additive, linear input terms, even if the
underlying substrate used to drive the control of the system may be subject to saturation.
Further, for defined windows of input concentration, we can also argue that the inputs are
approximately linear, when well within the windows of saturation.

This leads us to a GTSQS system of the form:

˙⃗x(t) = f⃗ (x⃗, t) + u⃗(t) (5)

where

f⃗ (x⃗, t) =


α1(t)(z/kz)nz

1+(y/ky)
ny+(z/kz)nz − δ1(t)x

α2(t)
1+(x/kx)nx − δ2(t)y

α3(t)z
kz+z − δ3(t)z


and u⃗(t) = (u1(t), u2(t), u3(t))T . More generally, it is a parameter varying nonlinear
system of the form:

˙⃗x = f⃗ (x⃗, α⃗(t), δ⃗(t)u⃗(t)) (6)

where

α⃗(t) =

α1(t)
α2(t)
α3(t)

, δ⃗(t) =

δ1(t)
δ2(t)
δ3(t)


and x⃗ ∈ R3.

We present the system (7) below to showcase an example of GTSQS behavior.


ẋ

ẏ

ż

 =


(1+e−t)z
1+y2.5+z −

(
1

2+e−t

)
x

(1+e−t)
1+x2.5 −

(
1

2+e−t

)
y

(1+e−t)z
1+z −

(
1

2+e−t

)
z

+


u1

u2

u3

 (7)
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For clarity, system (7) is the system (5) with the following parameters.

α1(t) = α2(t) = α3(t) = (1 + e−t)

δ1(t) = δ2(t) = δ3(t) = (2 + e−t)−1

nx = ny = 2.5, nz = 1

kx = ky = kz = 1.

In this example, our time-varying parameters elicit gene expression responses we
would expect in the context of nutrient starvation. On the time interval t ∈ [0, ∞), we see
that our functions in α⃗(t) go from 2 → 1 and our functions in δ⃗(t) go from 1

3 → 1
2 as t goes

from 0 → ∞. Intuitively, this means that the rates of synthesis are decreasing while the
rates of decay are increasing. Furthermore, they satisfy our modeling requirements in that
the functions are continuous, bounded, and exist in the limit as t → ∞.

From Figures 3 and 4 below, we can visualize the dynamics of example system (7),
and get a brief intuition of the behavior of the GTSQS. We see in Figure 3 that the z = 0
plane is invariant, and there is one stable fixed point on this plane. We also see that for
initial conditions with z > 0, go to one of two stable fixed points. Figure 4 shows that given
a quorum sensing input u3 = 0.01, we can take the initial conditions in the z = 0 plane to
one of the other fixed points. In this way, our model captures how quorum sensing can
affect log-phase and stationary phase gene expression.

Figure 3. Simulated phase space of GTSQS with no input in accordance with the example system in
(7). Trajectories are plotted with initial conditions as blue empty circles and fixed points are seen as
red filled circles.
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Figure 4. Simulated phase space of GTSQS with input u1 = u2 = 0 , u3 = 0.01 in accordance with
the example system in (7). Trajectories are plotted with initial conditions as blue empty circles and
fixed points are seen as red filled circles.

2.3. Analysis of GTSQS Model

Here we provide mathematical analysis of our model over the domain D which is the
first octant:

D = {(x, y, z) | x ≥ 0, y ≥ 0, z ≥ 0}.

The motivation for the choice of the domain of the GTSQS is that physically, it would
be impossible for the state variables x, y, z (which represent quantities correlated to gene
expression) to be negative in the sense of physical reality. Therefore, our model should
not allow our state variables to be negative if we want the model to reflect biological
phenomena. If one would like to experiment with possible negative states (outside the
scope of this paper), then one should keep in mind that certain choices of nx, ny, nz may
result in a vector field that have non-zero imaginary part, and inquiry into this topic would
require tools from complex analysis.

2.3.1. Positively Invariant Domain

It can be trivially shown that for the genetic toggle switch (1) and for the PVTS (2) the
first quadrant is positively invariant. Since this is the case, we require a similar result for
our generalized model that is the GTSQS (4). We provide this result along with a proof that
should serve as the blueprint for showing that the first quadrant is positively invariant for
the systems (1) and (2).

Theorem 1. The positive orthant is positively invariant under the flow of the GTSQS with no
inputs.

Proof. We want to show that the domain:

D = {(x, y, z) | x ≥ 0, y ≥ 0, z ≥ 0}

is positively invariant under the flow of the autonomous GTSQS, that is, (x(t), y(t), z(t)) ∈ D
for all t ≥ 0 if (x0, y0, z0) ∈ D, and u⃗ = 0.
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We start our proof by assuming, for contradiction, that the system is not positively
invariant, i.e. that for some (x0, y0, z0) ∈ D, (x(t), y(t), z(t)) /∈ D for some t ≥ 0. In
order for this to be the case, the trajectory (x(t), y(t), z(t)) must have passed through the
boundary of the first octant DB = {(0, y, z)} ∪ {(x, 0, z)} ∪ {(x, y, 0)} Plugging in these
boundary coordinates to the dynamics of our system, it is clear that if x = 0, then ẋ ≥ 0; if
y = 0, then ẏ ≥ 0; if z = 0, then ż ≥ 0 which implies that our trajectory could not have left
D.

Remark 1. We verify only for the u⃗ = 0⃗ case because it is always mathematically possible to select
some input u⃗ that would bring our state out of the positive orthant, even if such a control input
would not be feasible in an actual genetic circuit.

2.3.2. Existence of Unique Solutions of GTSQS

In order to show that the GTSQS meets some basic criteria, and is in line with existing
genetic toggle switch theory, we provide Proposition 2 to ensure that our model has unique
solutions on our domain (proof found in Appendix B).

Proposition 2. Solutions to the GTSQS with initial conditions x⃗0 starting in

D = R≥0 ×R≥0 ×R≥0

exist and are unique assuming bounded time-varying parameters where t ≥ 0.

2.3.3. Controllability of GTSQS

One of the properties to consider when designing a control system is controllability
of the domain. In this section we see that the domain of the GTSQS is in fact controllable
using the feedback linearization control strategy as follows:

We can write the GTSQS as
ẋ

ẏ

ż

 =


α1(t) f1(y, z)− δ1(t)x

α2(t) f2(x)− δ2(t)y

α3(t) f3(z)− δ3(t)z

+


u1(t)

u2(t)

u3(t)

 (8)

where

f1(y, z) =
(z/kz)nz

1 + (y/ky)
ny + (z/kz)nz

f2(x) =
1

1 + (x/kx)nx

f3(z) =
z

kz + z

and we choose the controller u(t) such that
u1(t)

u2(t)

u3(t)

 =


−α1(t) f1(y, z) + ū1

−α2(t) f2(x) + ū2

−α3(t) f3(z) + ū3
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where ū1, ū2, ū3 are chosen to get desired steady state values. This implies that the system
under the described control input has the desired GAS fixed point

(x∗, y∗, z∗) =
(

ū1

δ1
,

ū2

δ2
,

ū3

δ3

)
.

where δi is the respective limit of δi(t) as t → ∞ for all i ∈ {1, 2, 3}. Since the desired
fixed point can be chosen to be any point in our domain D, the system is controllable.
Furthermore, since the controlled system is linear, the fixed point is unique, whereas the
system with no input usually has more depending on the choice of parameters.

This mathematical result from feedback linearization is not robust. In order for
this control law to work in practice, one must be completely accurate in capturing the
nonlinearities and time-varying parameters in ui(t), which is a non-trivial endeavor [32].
Hoping that this would work in a real genetic toggle switch is optimistic at best and a
robust control strategy is required. The developments that have been made in the field of
robust control allow us to synthesize theoretical controllers for this class of systems that
give desired system behavior [33]. We only showcase the rudimentary controller above to
show that the system is in fact theoretically controllable.

With the developments in understanding the dynamics and control of systems in the
framework of Koopman Operator theory, we wish to exhibit a control strategy that works
similarly in the Koopman framework.

3. Stability Analysis of Parameter-Varying Nonlinear Systems with a Koopman
Operator Approach

We now consider stability analysis of the genetic toggle switch, using a more general
method that applies to a broader class of parameter-varying nonlinear systems. To begin,
notice that the genetic toggle switch model with quorum sensing (2) can be written as

˙⃗x = A(t) f⃗ (x⃗)− ∆(t)x⃗ (9)

with the following assumptions :

A(t) =


α11(t) · · · · · · α1n(t)

α21(t)
. . .

...
...

. . . αn−1,n(t)
αn1(t) · · · · · · αnn(t)

,

f⃗ (x⃗) =

 f1(x⃗)
...

fn(x⃗)

,

∆(t) =


δ11(t) · · · · · · δ1n(t)

δ21(t)
. . .

...
...

. . . δn−1,n(t)
δn1(t) · · · · · · δnn(t)

,

and f⃗ : Rn → Rn is a vector-valued analytic function, A(t) and ∆(t) are positive (all entries
greater than zero for all t), bounded, continuous time-varying parameter matrices which
converge to positive constant matrices in the limit as t → ∞.

Remark 2. If one wishes to analyze the general form of the system in (9) or to look at a particular
case of an example system by choosing parameters, take precaution in removing the assump-
tions established as you may not be able to guarantee that the initial value problem for (9) has
unique solutions.
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Parameter-varying nonlinear systems of this form have multiplicatively separable
structure; the term A(t) f⃗ (x⃗) describes generalized birth processes in the creation of states
while the term −∆(t)x⃗ describes generalized death processes. Both birth and death pro-
cesses are attenuated or adjusted as a function of time, but the attenuation terms A(t)
and ∆(t) may be independent and distinct for birth and death processes, respectively. As
described previously, a strong motivation for systems with this structure is the presence of
time-dependent kinetic rates in many biological reactions in living cells [10]. The assump-
tions previously stated allow us to arrive at conclusions that cater to these physical models
of interest, while the most general form of results fall fairly directly from established theory
on linear time-varying (LTV) systems [34].

Our first goal is to develop a generalized method to analyze the stability of this system.
Direct analysis of a standard ansatz Lyapunov function such as V(x⃗) = x⃗T x⃗ can yield nice
results, but in general, coming up with Lyapunov functions for stability is a nontrivial
endeavor. We seek to extend the characterizations of stability from LTV theory to a broader
class of nonlinear parameter varying systems that have the structure of Equation (9). To
achieve this goal we will introduce and extend the method of Koopman to this class of
parameter varying nonlinear systems because there has been much work done on the
stability of nonlinear systems within this framework [19,35–38]. First, we briefly introduce
the Koopman operator representation of a time-invariant dynamical system.

Suppose that

dx⃗
dt

= f⃗ (x⃗) (10)

is a continuous time nonlinear dynamical system. There exists an infinite-dimensional
linear operator Ut that acts on a Hilbert function space G with invariant measure µ to
satisfy the equation

dg⃗(x⃗(t))
dt

= K ◦ g⃗(x⃗(t)) (11)

where K is known as a Koopman generator for the system (10), with corresponding
Koopman observable g⃗(x⃗). In general, the Koopman generator admits an uncountable
spectra, as it operates on an infinite dimensional function space. In special cases, say for
when f⃗ (x⃗) is analytic, then the Koopman generator can be countably infinite dimensional
or finite dimensional. The Koopman generator obtains its namesake in that it is used
to generate a semigroup of flows on the state of the system, parameterized by the time
variable t. In particular, when treating continuous time-invariant dynamical systems, we
say that the Koopman generator generates a semigroup of Koopman operators [18]

Ut = {exp ◦ (Kt)}.

Any element Ut ∈ Ut acts on the Koopman observable g(x⃗0), evaluated at some
initial condition x⃗0, to give g⃗(x⃗(t)) at time t ∈ [0, ∞). These elements Ut are known as
continuous-time Koopman operators that determine the flow of the dynamical system
mapped through the Koopman observable g⃗(x⃗(t)), as opposed to the direct flow of the
dynamical system in its natural state space [20].

The observable function g⃗(x⃗(t)) is the element of a function space G, which can be
a function space of vector-valued, scalar-valued, matrix valued functions, etc. There are
often multiple function spaces and multiple choices of Koopman observables that are
consistent with an operator Ut to satisfy the Koopman generator Equation (11), but a
particular class of Koopman observables of interest are state-inclusive or state-recoverable
Koopman observables [17,39–43]. Such Koopman observables g(x⃗(t)) satisfy the property
that there exists some function P⃗ : G → Rn such that x⃗(t) = P⃗(g⃗(x⃗(t))). An example of
this is the class of Koopman observables where g⃗(x⃗) is a vector valued function of the form
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g⃗(x⃗) =
(

x⃗
φ⃗(x⃗)

)
(12)

which is called a state inclusive Koopman observable. The nonlinear Koopman observ-
ables are held in φ⃗(x⃗) while the state of the system x⃗ is also used as an observable in
g⃗(x⃗). The standard case of Koopman observables which is not state-inclusive is just
g⃗(x⃗) = φ⃗(x⃗) [41]. The application problem often informs the appropriate function space
for the Koopman observable.

3.1. State Inclusive Time-Invariant Koopman Learning

It is of interest to investigate the Koopman learning problem of Equation (9) which is
a time-varying nonlinear system. Before we do this, let us cover the framework for state
inclusive time-invariant Koopman Learning found in [39].

We begin with a nonlinear system of the form

˙⃗x = f⃗ (x⃗) (13)

and we choose our state-inclusive set of observables g⃗(x⃗) =
(

x⃗
φ⃗(x⃗)

)
such that

˙⃗x = Kxx x⃗ + Kxφ φ⃗(x⃗) (14)

and
˙⃗φ(x⃗) = Kφx x⃗ + Kφφ φ⃗(x⃗) (15)

which converts the system into the linear form:( ˙⃗x
˙⃗φ

)
=

(
Kxx Kxφ

Kφx Kφφ

)
︸ ︷︷ ︸

K

(
x⃗

φ⃗(x⃗)

)
(16)

Note that here, we see that

Kxx is a n × n matrix

Kxφ is a n × m matrix

Kφx is a m × n matrix

Kφφ is a m × m matrix

If m < ∞, then the matrix K is finite-dimensional for the chosen set of observables φ⃗(x⃗).
In this case, we say that the basis of observables φ⃗(x⃗) satisfies the finite closure property.
This case is a rarity in practice, and more than likely we choose a set of observables that
gives an infinite-dimensvional K matrix, but we proceed with an approximation of the
system in the linear form by truncating the set of observables at some finite number m [39].

Lemma 1. If we have a nonlinear system that allows us to separate out the linear terms in the form

˙⃗x = f⃗ (x⃗)− Dx⃗ (17)

then there exists a time dependent Koopman Generator K(t) with state-inclusive observables

g⃗(x⃗) =
(

x⃗
φ⃗(x⃗)

)
such that

( ˙⃗x
˙⃗φ(x⃗)

)
=

(
−D Kxφ

Kφx Kφφ

)(
x⃗

φ⃗(x⃗)

)
. (18)
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Proof of Lemma 2. choose our observables such that from (14), we have

˙⃗x = Kxx x⃗︸ ︷︷ ︸
−Dx⃗

+Kxφ φ⃗(x⃗)︸ ︷︷ ︸
f⃗ (x⃗)

and with (15), we arrive at the system in Equation (9) in the linear form( ˙⃗x
˙⃗φ(x⃗)

)
=

(
−D Kxφ

Kφx Kφφ

)(
x⃗

φ⃗(x⃗)

)
. (19)

3.2. State Inclusive Time-Varying Koopman Learning

Previously, we have talked in great detail about the GTSQS, and now that we have
presented it in the form of Equation (9), let us address state-inclusive Koopman Learning
problem for this class of time-varying systems and obtain a time-dependent Koopman
Generator [44].

Theorem 2. If we have a nonlinear system that allows us to separate out the linear terms in
the form of (9), then there exists a time dependent Koopman Generator K(t) with state-inclusive

observables g⃗(x⃗) =
(

x⃗
φ⃗(x⃗)

)
such that

( ˙⃗x
˙⃗φ(x⃗)

)
︸ ︷︷ ︸

˙⃗g(x⃗)

=

(
−∆(t) A(t)Kxφ

Kφx(t) Kφφ(t)

)
︸ ︷︷ ︸

K(t)

(
x⃗

φ⃗(x⃗)

)
︸ ︷︷ ︸

g⃗(x⃗)

. (20)

Proof. Starting with our system

˙⃗x = A(t) f⃗ (x⃗)− ∆(t)x⃗

we choose our observables to give us

˙⃗x = ∆(t)x⃗︸ ︷︷ ︸
Kxx(t)x⃗

+A(t)Kxφ φ⃗(x⃗)︸ ︷︷ ︸
f⃗ (x⃗)

and

˙⃗φ(x⃗) = Kφx(t)x⃗ + Kφφ(t)φ⃗(x⃗)

which allows us to arrive at the system in the linear time-varying (LTV) form( ˙⃗x
˙⃗φ(x⃗)

)
︸ ︷︷ ︸

˙⃗g(x⃗)

=

(
−∆(t) A(t)Kxφ

Kφx(t) Kφφ(t)

)
︸ ︷︷ ︸

K(t)

(
x⃗

φ⃗(x⃗)

)
︸ ︷︷ ︸

g⃗(x⃗)

for which we have our (n + m)× (n + m) time-varying Koopman generator K(t).

3.3. Spectral Properties of Parameter-Varying Koopman Generators

This LTV form ˙⃗g(x⃗) = K(t)g⃗(x⃗) allows us to extend the spectral results of LTV
theory to Koopman models of the form in (20). From seeing that the system in Equation (9)
gives a time-varying Koopman operator of the form (20), we begin with summarizing
the “dynamic eigenvalue problem” [45] for this class of systems. We say that a dynamic
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eigenvalue λ(t) has an associated differentiable non-zero dynamic eigenvector u⃗(t) if the
eigenpair {λ(t), u⃗(t)} satisfies

(K(t)− λ(t)I)u⃗(t) = ˙⃗u(t) (21)

in accordance with the classical LTV system theory [46]. The dynamic eigenvalue problem
characterizes finding the dynamic eigenpairs {λi(t), u⃗i(t)} that satisfy Equation (21). This
can be done classically with Wu’s algorithm [46] stated as follows in the context of the
time-varying matrix K(t) of size N := (n + m)

1. Let the index variable j = 1 and let Kj(t) = K(t) .
2. Compute the eigenpairs of Kj(t), denoted as {λij(t), u⃗ij(t)}, i = 1, 2, ..., N and check

if all of dynamic eigenvalues {λij(t)} are distinct. If they are distinct, then define the
matrix Sij(t) which has the dynamic eigenvectors uij(t) as its columns.

Sj(t) = [u⃗1j(t), u⃗2j(t), ..., u⃗Nj(t)] (22)

Λj(t) = diag[λ1j(t), λ2j(t), ..., λNj(t)] (23)

and proceed with step 3.
If the eigenvalues are not distinct, then one must choose an appropriate non-singular
matrix Sj(t) and proceed with step 3.

3. Compute Ej(t) = Ṡj(t)S−1
j (t) + Kj(t)− K(t)

4. Check Ej(t) :
If Ej(t) is the matrix of all zeroes, then let

S(t) = Sj(t) and Λ(t) = Λj(t) (24)

and we are done. The columns {u⃗i(t)} of S(t) give the dynamic eigenvectors of K(t)
and the elements of Λ(t), {λi(t)} are the dynamic eigenvalues of K(t).
If Ej(t) has nonzero entries, then let j = j + 1 and compute

Kj(t) = Kj−1(t)− Ej−1(t) (25)

and go back to step 2.

With this algorithm established as a way to solve the dynamic eigenvalue problem for our
matrix K(t), let us also define the non-zero, differentiable vector

m⃗i(t) := e
∫ t

t0
λi(τ)dτ u⃗i(t) (26)

which is said to be the “mode vector” of K(t) associated with the eigenpair {λi(t), u⃗i(t)}.

3.4. Stability Properties of Parameter-Varying Koopman Generators

It is commonly known that one can use a Lyapunov function to guarantee the stability,
asymptotic stability, exponential stability, or instability of a dynamical system [34]. One
benefit of the Koopman form (20) is that we can use the previous section which summarizes
the spectral properties of system (20) to write necessary and sufficient conditions for
stability and asymptotic stability found in [46].

Lemma 2. The LTV system (20) is :

(i) stable if and only if every mode vecter mi(t) of K(t) is bounded, i.e.

∥m⃗i(t)∥ < ∞, t > t0, ∀i ∈ {1, 2, ...N} (27)
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(ii) asymptotically stable if and only if that in addition to (i), we have that

∥m⃗i(t)∥ → 0 as t → ∞ ∀i ∈ {1, 2, ...N} (28)

From Lemma 2, we see that we can deduce the stability of system (20) by solving the
dynamic eigenvalue problem and checking to see if the conditions of Lemma 2 are satisfied
for the system’s mode vectors. This result applied to system (20) can be used to show the
stability of the time-varying nonlinear system (9) without the use of a Lyapunov function.

Since we have bounded time-varying coefficients for the LTV system (20), we can also
use the necessary and sufficient condition for asymptotic stability through examining the
“poles” of the system [47,48]. Let us briefly define the poles of the system, and summarize
the condition for asymptotic stability. We have from (20) that

˙⃗g(x⃗) = K(t)g⃗(x⃗) (29)

Define a change of variables
g⃗(x⃗) = L(t)⃗y(x⃗) (30)

where L(t) is unitary, bounded, differentiable for t > t0, and L̇ is bounded. L(t) is hereby
a Lyapunov transformation, so it preserves the stability properties of the original system.
L(t) brings the system (29) to

˙⃗y(x⃗) = B(t)⃗y(x⃗) (31)

where
B(t) = L−1(t)K(t)L(t)− L−1(t)L̇(t) (32)

and the poles of the system are defined as the diagonal of the upper-triangular state matrix
B(t). Let us denote this set of poles as P := {bii(t)} ∀i ∈ {1, 2, ..., N}. Now we arrive at
the lemma that allows us to determine the asymptotic stability of (29) from its poles.

Lemma 3. The system defined by (29) where K(t) is bounded is exponentially stable if and only if

lim
t→∞

sup
i

bii(t) < 0 . (33)

Remark 3. Generally, coming up with a Lyapunov transformation L(t) that meets these require-
ments can be as difficult, but there exists algorithms that solve for this L(t); see [45].

Among these LTV results, there also exists methods of showing system stability that
involve analysis on the system’s isostables [37]. We previously mentioned the possibility
of being able to use a Lyapunov function to show stability, which has been done in the
Koopman framework by making use of the Koopman eigenfunctions [36,49,50]. In the
context of our paper, the time-dependent eigenfunctions can be analyzed [44] and can also
be used to formulate valid Lyapunov functions to show stability on a case-by-case basis.

When it comes to the design of a system, it would be desirable if the modelling portion
of the design process was efficient. Since Wu’s algorithm is computationally intensive, it
would be desirable if we could easily check some conditions to ensure that the time-varying
parameters chosen for the system have a chance at producing a stable system.

We know that the trace of K(t), denoted as tr(K(t)) is time-varying. Explicitly, we can
write the trace as

tr(K(t)) = −
n

∑
i=1

∆ii(t) + tr(Kφφ(t)) . (34)

From Wu [46], we have the following proposition which provides a necessary condi-
tion for the asymptotic stability of a general LTV system.
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Proposition 3. If the LTV system ˙⃗x = A(t)x⃗ is asymptotically stable, then it is necessary for
any t > t0 that ∫ t

t0

tr(A(τ))dτ → −∞ , as t → ∞ . (35)

We naturally extend this to the time-varying Koopman generator system with Lemma 4.

Lemma 4. If the time-varying Koopman generator system ˙⃗g(x⃗) = K(t)g⃗(x⃗) is asymptotically
stable, then it is necessary for any t > t0 that∫ t

t0

tr(K(τ))dτ → −∞ , as t → ∞ . (36)

Now we use Lemma 4 to show that for Koopman systems of the form (20), we have a
theorem that provides an easy way to determine if system (20) is not asymptotically stable.

Theorem 3. If a PVNS with a Koopman representation of the form (20) with assumptions described
as in (9) satisfies

lim
t→∞

n

∑
i=1

∆ii(t) > lim
t→∞

tr(Kφφ(t)) (37)

then the necessary condition of Lemma 4 is satisfied.

Proof. We apply Lemma 4 to our system (20) and find that if system (20) is asymptotically
stable, then it is necessary for any t > t0 that∫ t

t0

tr(K(τ))dτ → −∞, as t → ∞

=⇒
∫ t

t0

[
−

n

∑
i=1

∆ii(τ)dτ + tr(Kφφ(τ))

]
dτ → −∞ .

Recall the assumptions in (9) which state that ∆ij(t) is bounded and ∆ij(t) → ∆̄ij > 0
as t → ∞. So if we have that ∑ ∆̄ii is some constant which is greater than the limit of
tr(Kφφ(t)), then integral above goes to −∞.

Remark 4. With this result, it becomes possible to easily ensure that the system designed and
realized in the form of (20) is not ruled out from the possibility of being asymptotically stable. If
the system fails to meet the condition of Theorem 3, then one can tune the parameters of ∆(t) to
satisfy the condition. Note that just because a system in the form of (20) may satisfy the condition
of Theorem 3, this does not mean the system is guaranteed to be stable because the condition in
Theorem 3 only satisfies a necessary condition for asymptotic stability, not a sufficient one.

Note that it is possible to have asymptotic stability if

lim
t→∞

n

∑
i=1

∆ii(t) = lim
t→∞

tr(Kφφ(t)), (38)

but in this case, one must take the integral stated in Lemma 4 and ensure that it goes to −∞ to meet
the necessary condition of Lemma 4.

We utilize a similar result from [46] in the proposition below to provide a sufficient
condition for the instability of a system in the form of (20).

Proposition 4. If for any t > t0∫ t

t0

tr(A(τ))dτ → ∞, as t → ∞
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then the system ˙⃗x = A(t)x⃗ is unstable.

We now extend this to the time-varying Koopman generator system with Lemma 5.

Lemma 5. If for any t > t0 ∫ t

t0

tr(K(τ))dτ → ∞, as t → ∞

then the system ˙⃗g(x⃗) = K(t)g⃗(x⃗) is unstable.

Theorem 4. Assume we have a PVNS with a Koopman representation of the form (20). If for any
t > t0

lim
t→∞

n

∑
i=1

∆ii(t) < lim
t→∞

tr(Kφφ(t)) (39)

then the system is unstable.

Proof. We have the assumption that ∆ij(t) is bounded and ∆ij(t) → ∆̄ij > 0 as t → ∞. In
addition, let us assume that

0 < lim
t→∞

n

∑
i=1

∆ii(t) =
n

∑
i=1

∆̄ii < lim
t→∞

tr(Kφφ(t)) .

Then we have that

lim
t→∞

∫ t

t0

tr(K(τ))dτ

= lim
t→∞

∫ t

t0

[
−

n

∑
i=1

∆ii(τ) + tr(Kφφ(τ))

]
dτ.

by our initial assumptions, we have that the above limit goes to ∞, which implies that the
system (20) is unstable in accordance with Lemma 5.

Remark 5. Since this is a sufficient condition for the instability of a PVNS in the Koopman form of
(20), one can use this to verify the instability of such a system. Intuitively, one can understand the
results from Theorem 3 and 4 as results on the steady state term ∆(t)D which corresponds with the
death processes in Equation (9).

The novelty of this section comes from the presented methodology of being able to
take a PVNS with separable structure (9) to the time-varying Koopman form (20) where
we understand the structure of the Koopman generator K(t) to the extent of being able to
determine if a system is not asymptotically stable from examining the steady state values
of the diagonal of K(t).

4. Nonlinear Feedback Control Design with Parameter-Varying Koopman Operators

It has been shown to be both possible and practical to implement control strategies
within the realm of Koopman operator theory [49,51–53]. We’ve shown in 2.3.5 that the
GTSQS is mathematically controllable. Now, we wish to show that u(t) in the form of a
negative observable feedback controller can stabilize systems of this form in the Koopman
framework presented.

We take the time-varying system in Koopman form and linearly add in our controller u⃗(t).( ˙⃗x
˙⃗φ(x⃗)

)
=

(
−∆(t) A(t)Kxφ

Kφx(t) Kφφ(t)

)
︸ ︷︷ ︸

K(t)

(
x⃗

φ⃗(x⃗)

)
+ u⃗(t) (40)
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We can rewrite the system by substituting

g⃗(x⃗) =
(

x⃗
φ⃗(x⃗)

)
giving us

˙⃗g(x⃗) = K(t)g⃗(x⃗) + u⃗(t)

Now in the same vein as in 2.3.5, we select u such that

u⃗(t) = −
(

Mxx(t) Mxφ(t)
Mφx(t) Mφφ(t)

)
︸ ︷︷ ︸

M

(
x⃗

φ⃗(x⃗)

)

where we can select the blocks of the matrix M to give us stability. Depending on ∆(t)
and A(t), it may be required that we have Mxx and/or Mxφ to vary with time in order to
guarantee stability. Plugging this controller u⃗(t) back into the original equations gives us

˙⃗g(x⃗) =
(
−∆(t)− Mxx(t) A(t)Kxφ − Mxφ(t)
Kφx(t)− Mφx(t) Kφφ(t)− Mφφ(t)

)
g⃗(x⃗)

which can be rewritten in the simplified form

˙⃗g(x⃗) = (K(t)− M(t))g⃗(x⃗)

where M(t) can be chosen to satisfy stability conditions.

5. Examples of Time-Varying Koopman Representations Being Used in Conjunction
with Theorems 3 and 4
5.1. Example 1

Consider the system (
ẋ1

ẋ2

)
=

(
−δ1µ(t)x1

−δ2γ(t)(x2 − x2
1)

)
. (41)

This system is of the form (9) where

A(t) = diag{0, δ2γ(t)}, ∆(t) = diag{δ1µ(t), δ2γ(t)} .

So by letting φ(x⃗) = x2
1 we can write it in the form of (20) where

Kφx =
(
0 0

)
, Kxφ =

(
0 1

)T , Kφφ(t) = −2δ1µ(t) .

Written more explicitly, we have: ẋ1
ẋ2

φ̇(x1))

 =

−δ1µ(t) 0 0
0 −δ2γ(t) δ2γ(t)
0 0 −2δ1µ(t)

 x1
x2

φ(x1)

 . (42)

Now, if we attempt to design the system parameters such that we satisfy the condition of
Theorem 3, then we must have that

lim
t→∞

(δ1µ(t) + δ2γ(t)) > lim
t→∞

−2δ1µ(t) . (43)
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So assuming that we want our parameters to be bounded, the condition is satisfied as long
as we choose µ(t) and γ(t) to converge to any positive constants.

From here, one can work through a method of one’s choice (i.e. Wu’s algorithm [46],
Lyapunov function [54], poles via Lyapunov transform [47], etc.) to verify if a particular
choice of µ(t) and λ(t) provide an asymptotically stable system.

5.2. Example 2

Consider the systemẋ1

ẋ2

ẋ3

 =

 α(t)− γ1(t)δ1x1

δ2k1(t)x1 − γ2(t)δ2x2

k2(t)x1x2 − γ3(t)δ3x3 + β(t)

 (44)

where are all time-varying parameters are bounded and convergent. This system is of the
form:

˙⃗x = A(t) f⃗ (x⃗)− ∆(t)x⃗ + u⃗(t)

where

A(t) = diag{0, 0, k2(t)}, ∆(t) =

 γ1(t)δ1 0 0

−k1(t)δ2 γ2(t)δ2 0

0 0 γ3(t)δ3

,

u⃗(t) =

α(t)
0

β(t)

.

So by letting

φ⃗(x⃗) =

(
x1x2

x2
1

)
we have brought the system into the Koopman form of (40) where

Kφx(t) =
(

0 α(t) 0
2α(t) 0 0

)
, Kxφ(t) =

0 0
0 0
1 0

,

Kφφ(t) =
(
−(γ2(t)δ2 + γ1(t)δ1) k1(t)δ2

0 −2γ1(t)δ1

)
, u⃗φ(t) =


α(t)

0
β(t)

0
0

.

Written more explicitly, we have that( ˙⃗x
˙⃗φ(x⃗)

)
=

(
−∆(t) A(t)Kxφ

Kφx(t) Kφφ(t)

)
︸ ︷︷ ︸

K(t)

(
x⃗

φ⃗(x)

)
+ u⃗φ(t) (45)

where

K(t) =


−γ1(t)δ1 0 0 0 0
k1(t)δ2 −γ2(t)δ2 0 0 0

0 0 −γ3(t)δ3 k2(t) 0
0 α(t) 0 −(γ2(t)δ2 + γ1(t)δ1) k1(t)δ2

2α(t) 0 0 0 −2γ1(t)δ1

. (46)
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Now, if we attempt to design the system parameters such that we satisfy the condition of
Theorem 3, then we must have that

lim
t→∞

(γ1(t)δ1 + γ2(t) + δ2γ3(t)) > lim
t→∞

(−γ2(t)δ2 − 3γ1(t)δ1). (47)

So assuming that we want our parameters to be bounded, the condition is satisfied as
long as we choose γi(t) to converge to any positive constants. Also, note that the affine
linear time-varying input u(t) permits us a limited fixed point selection. From here, one
can work through a method of one’s choice (i.e. Wu’s algorithm [46], Lyapunov function
[54], poles via Lyapunov transform [47], etc.) to verify if a particular choice of time-varying
parameters provide an asymptotically stable system.

Remark 6. The implication of satisfying the condition of Theorem 3 has been shown using the
methodology described in this paper. If one wishes to satisfy the condition of Theorem 4 for the
two examples presented, then flip the inequality symbol in (43) and (47) and choose appropriate
parameters that cause the resulting systems to be unstable.

5.3. Discrete Time Analog

Since the Koopman operator framework also extends to discrete-time systems [18,55],
we show a brief extension of the time-varying Koopman operator now in discrete-time.
Suppose we have a PVNS in discrete-time of the following form:

x⃗(tn+1) = A(t) f⃗ (x⃗(tn))− ∆(tn)x⃗(tn). (48)

Then, similarly to the process in Section 4, by choosing the state-inclusive set of observables

g⃗(x⃗) =
(

x⃗
φ⃗(x)

)
such that

x⃗(tn+1) = ∆(t)︸︷︷︸
Kxx(t)

x⃗(tn) + A(tn)Kxφ φ⃗(x⃗(tn)) (49)

and

φ⃗(x⃗(tn+1)) = Kφx(tn)x⃗(tn) + Kφφ(tn)φ⃗(x⃗(tn))

we obtain the discrete-time-varying system in the following form:(
x⃗

φ⃗(x⃗)

)
tn+1

=

(
−∆(tn) A(tn)Kxφ

Kφx(tn) Kφφ(tn)

)(
x⃗

φ⃗(x⃗)

)
tn

. (50)

Remark 7. By discretizing (9) with the Forward-Euler method, we can arrive at the discrete-time
system (

x⃗
φ⃗(x⃗)

)
tn+1

=

(
I − hn∆(tn) hn A(tn)Kxφ

Kφx(tn) Kφφ(tn)

)(
x⃗

φ⃗(x)

)
tn

(51)

where hn := (tn+1 − tn). We can deduce the stability properties for the discrete time systems (50)
and (51) by using the well established results on the stability of discrete time-varying linear systems
found in [56]. In application, the gene expression data from a genetic toggle switch comes as a
sequence of vectors. Understanding how the time-varying parameters affect the data observed
from the system can be achieved through this result. Using other methods such as dynamic mode
decomposition would not grant us the ability directly see the affect of the time-varying parameters
on the time-varying Koopman operator in this way.

6. Conclusions

In this paper, we extended the classical genetic toggle switch model to a parameter
varying toggle switch that maintained the key characteristics of the original model while
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allowing for the kinetic rates of synthesis to vary with time. Next, we provided the
model of the genetic toggle switch with quorum sensing which includes the one sided
activation of a gene due to quorum sensing, as well as affine linear inducer inputs. We then
showed that the genetic toggle switch with quorum sensing is controllable using feedback
linearization. In addition to the genetic model provided in the paper, we showed how we
can use Koopman operator theory to take a parameter varying nonlinear system with a
particular separable structure to the form of a time-varying Koopman generator equation.
Further, we showed how to determine the stability of the system in its Koopman generator
form using theorems derived from classical linear time-varying system theory. Within
this Koopman framework, we exhibited a general control strategy for the time-varying
Koopman system analogous to the one provided for the genetic toggle switch with quorum
sensing. Finally, we utilized the time-varying Koopman framework in the discrete-time
setting, showing that if we had a parameter varying nonlinear discrete-time system with
a particular separable structure, then we can use Koopman Operator theory to take this
system to the form of a time-varying Koopman operator equation.
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Appendix A

Here we prove Proposition 1.

Proof. It is sufficient to show that the vector field of the PVTS is Lipschitz by showing that
the Jacobian of the vector field J = ∂

∂x f (x, t) is bounded on D, i.e. ∥J∥ < ∞. Since we can
show boundedness using any norm, we conveniently use the infinity norm (maximum
absolute row sum). The vector field gives us the following Jacobian matrix:

J =

 −δ1(t) − α1(t)ny(y/ky)
(ny−1)

((y/ky)
ny+1)2

− α2(t)nx(x/kx)(nx−1)

((x/kx)nx+1)2 −δ2(t)

.
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We have the assumption that

0 < α1(t) ≤ ᾱ1 for some constant ᾱ1,

0 < α2(t) ≤ ᾱ2 for some constant ᾱ2,

0 < δ1(t) ≤ δ1 for some constant δ1,

0 < δ2(t) ≤ δ2 for some constant δ2.

By examining the off-diagonal entries of J, we see that these functions are bounded because
the degree of the leading power term in the denominator is greater than that of the
numerator in both terms. With this argument, we have that∣∣∣∣∣α1(t)ny(y/ky)

(ny−1)

((y/ky)
ny + 1)2

∣∣∣∣∣ ≤ ᾱ1ny,

∣∣∣∣∣−α2(t)nx(x/kx)(nx−1)

((x/kx)nx + 1)2

∣∣∣∣∣ ≤ ᾱ2nx.

Thus, we have that
∥J∥∞ ≤ max{δ1 + ᾱ1ny, δ2 + ᾱ2nx}.

Appendix B

Here we prove Proposition 2.

Proof. We will show that the Jacobian of the dynamics of the GTSQS is bounded over the
subset of the domain where z > 0. Later in the proof, we show that the vector field of the
GTSQS is Lipschitz for z = 0, thus showing that the entire domain is Lipschitz. We can
partition the domain in this way because the z = 0 plane is invariant under the vector field
of the GTSQS. We will continue by bounding the infinity norm of the Jacobian.

The Jacobian is :

J =


−δ1(t)

−α1(t)( z
kz
)nz ( 1

ky
)ny nyyny−1

(1+(
y

ky
)ny+( z

kz
)nz )2

α1(t)nz
z(1+(

y
ky
)ny+( z

kz
)nz )2

−α2(t)nx xnx−1( 1
kx

)nx

(1+( x
kx

)nx )2 −δ2(t) 0

0 0 kzα3(t)
(kz+z)2 − δ3(t)


By ensuring the boundedness of each component of our Jacobian matrix, we verify the
boundedness of the infinity norm of the Jacobian. The zero components, of course, are
trivially bounded. We are assuming bounded time-varying parameters, so we explicitly
write these bounds as

0 < α1(t) ≤ ᾱ1 for some constant ᾱ1,

0 < α2(t) ≤ ᾱ2 for some constant ᾱ2,

0 < α3(t) ≤ ᾱ3 for some constant ᾱ3,

0 < δ1(t) ≤ δ1 for some constant δ1,

0 < δ2(t) ≤ δ2 for some constant δ2,

0 < δ3(t) ≤ δ3 for some constant δ3.

Let us examine the following function:

J33 =
kzα3(t)
(kz + z)2 − δ3(t) =⇒ |J33| ≤ max{ ᾱ3

kz
, δ3} := J33 .
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Next, consider the function:

J21 =
−α2(t)nxxnx−1( 1

kx
)nx

(1 + ( x
kx
)nx )2 .

We have that the power terms in the denominator are strictly greater than that of the
numerator, thus

|J21| ≤ ᾱ2nx(
1
kx

)nx .

By similar argument, we have that

|J12| ≤ ᾱ1ny(
1
ky

)ny .

Finally, consider the function:

J13 =
α1(t)nz

z(1 + ( y
ky
)ny + ( z

kz
)nz)2

.

This function is undefined for z = 0, so in order for this function to be bounded, we must
require that z > 0. With this, we have

|J13| ≤ ᾱnz .

So we have for z > 0

∥J∥∞ ≤ Lz>0 = max{ᾱnz + ᾱ1ny

(
1
ky

)ny

+ δ1, ᾱ2nx

(
1
kx

)nx

+ δ2, J33}.

Now we show that the vector field is Lipschitz for z = 0 with Lipschitz constant

Lz=0 = max{
(

δ1 +
ᾱ2

kx

)
, δ2} .

Consider the domain

Dz=0 = {(x, y, z) | x ≥ 0, y ≥ 0, z = 0}.

From (4), we see that for z = 0, u⃗ = 0, we have that
ẋ

ẏ

ż

 =


−δ1(t)x

α2(t)
1+(x/kx)nx − δ2(t)y

0

 =: f⃗ (x⃗, t).

Let x⃗, x⃗′ ∈ Dz=0. Then we want to show that for some constant Lz=0, we have the following:

∥ f⃗ (x⃗, t)− f⃗ (x⃗′, t)∥ < Lz=0∥x⃗ − x⃗′∥
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Let us proceed with nx = 1 for simplicity and without loss of generality, and the norm is
the 1-norm.

∥ f⃗ (x⃗, t)− f⃗ (x⃗′, t)∥1 =

∥∥∥∥∥∥∥∥∥


δ1(t)(x′ − x)

α2(t)((x′/kx)−(x/kx))
(1+(x/kx))(1+(x′/kx))

+ δ2(t)(y′ − y)

0


∥∥∥∥∥∥∥∥∥

1

= δ1(t)|x′ − x|+
∣∣∣∣ α2(t)((x′/kx)− (x/kx))

(1 + (x/kx))(1 + (x′/kx))
+ δ2(t)(y′ − y)

∣∣∣∣
so by triangle inequality

≤ δ1|x′ − x|+ ᾱ2

∣∣∣∣ ((x′/kx)− (x/kx))

(1 + (x/kx))(1 + (x′/kx))

∣∣∣∣+ δ2|(y′ − y)|

≤ δ1|x′ − x|+ ᾱ2
∣∣((x′/kx)− (x/kx))

∣∣+ δ2|(y′ − y)|

=

(
δ1 +

ᾱ2

kx

)
|x′ − x|+ δ2|(y′ − y)|

≤ Lz=0∥x⃗ − x⃗′∥

for Lz=0 = max{
(

δ1 +
ᾱ2
kx

)
, δ2}.

Hence, the vector field of the GTSQS is Lipschitz on our domain with Lipschitz
constant L = max{Lz>0, Lz=0}. So there exists a unique solution for each initial condition
starting in the given domain.
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33. Freeman, R.A.; Kokotović, P.V. Robust Nonlinear Control Design: State-Space and Lyapunov Techniques, Springer:

Berlin/Heidelberg, Germany, 2008.
34. Hespanha, J. Linear Systems Theory, Princeton University Press, Princeton, New Jersey 2015.
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55. Williams, M.O.; Rowley, C.W.; Mezić, I.; Kevrekidis, I.G. Data fusion via intrinsic dynamic variables: An application of data-driven

Koopman spectral analysis. EPL (Europhys. Lett.) 2015, 109, 40007, doi:10.1209/0295-5075/109/40007.
56. Zhou, B.; Zhao, T. On Asymptotic Stability of Discrete-Time Linear Time-Varying Systems. IEEE Trans. Autom. Control. 2017,

62, 4274–4281, doi:10.1109/TAC.2017.2689499.

https://doi.org/10.1080/00207728408926550
https://doi.org/10.1080/00207728408926550
https://doi.org/10.1109/81.922459
https://doi.org/10.1088/2632-2153/abf0f5
https://doi.org/10.1137/16M1062296
https://doi.org/10.1016/j.automatica.2018.03.046
https://doi.org/10.1137/15M1013857
https://doi.org/10.1109/TAC.2017.2652302
https://doi.org/10.1209/0295-5075/109/40007
https://doi.org/10.1109/TAC.2017.2689499

	Introduction
	Parameter Varying Toggle Switch Models
	Parameter-Varying Toggle Switch (PVTS) System Model
	Genetic Toggle Switch with Quorum Sensing
	Analysis of GTSQS Model
	Positively Invariant Domain
	Existence of Unique Solutions of GTSQS
	Controllability of GTSQS


	Stability Analysis of Parameter-Varying Nonlinear Systems with a Koopman Operator Approach
	State Inclusive Time-Invariant Koopman Learning
	State Inclusive Time-Varying Koopman Learning
	Spectral Properties of Parameter-Varying Koopman Generators
	Stability Properties of Parameter-Varying Koopman Generators

	Nonlinear Feedback Control Design with Parameter-Varying Koopman Operators
	Examples of Time-Varying Koopman Representations Being Used in Conjunction with Theorems 3 and 4
	Example 1
	Example 2
	Discrete Time Analog

	Conclusions
	
	
	References

